91 research outputs found

    Director Field Model of the Primary Visual Cortex for Contour Detection

    Full text link
    We aim to build the simplest possible model capable of detecting long, noisy contours in a cluttered visual scene. For this, we model the neural dynamics in the primate primary visual cortex in terms of a continuous director field that describes the average rate and the average orientational preference of active neurons at a particular point in the cortex. We then use a linear-nonlinear dynamical model with long range connectivity patterns to enforce long-range statistical context present in the analyzed images. The resulting model has substantially fewer degrees of freedom than traditional models, and yet it can distinguish large contiguous objects from the background clutter by suppressing the clutter and by filling-in occluded elements of object contours. This results in high-precision, high-recall detection of large objects in cluttered scenes. Parenthetically, our model has a direct correspondence with the Landau - de Gennes theory of nematic liquid crystal in two dimensions.Comment: 9 pages, 7 figure

    Rat Brain Pro-Oxidant Effects of Peripherally Administered 5 nm ceria 30 Days After Exposure

    Get PDF
    The objective of this study was to determine the residual pro-or anti-oxidant effects in rat brain 30 days after systemic administration of a 5 nm citrate-stabilized ceria dispersion. A ∌4% aqueous ceria dispersion was iv-infused (0 or 85 mg/kg) into rats which were terminated 30 days later. Ceria concentration, localization, and chemical speciation in the brain was assessed by inductively coupled plasma mass spectrometry (ICP-MS), light and electron microscopy (EM), and electron energy loss spectroscopy (EELS), respectively. Pro- or anti-oxidant effects were evaluated by measuring levels of protein carbonyls (PC), 3-nitrotyrosine (3NT), and protein-bound-4-hydroxy-2-trans-nonenal (HNE) in the hippocampus, cortex, and cerebellum. Glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase levels and activity were measured in addition to levels of inducible nitric oxide (iNOS), and heat shock protein-70 (Hsp70). The blood brain barrier (BBB) was visibly intact and no ceria was seen in the brain cells. Ceria elevated PC and Hsp70 levels in hippocampus and cerebellum, while 3NT and iNOS levels were elevated in the cortex. Whereas glutathione peroxidase and catalase activity were decreased in the hippocampus, GR levels were decreased in the cortex, and GPx and catalase levels were decreased in the cerebellum. The GSH:GSSG ratio, an index of cellular redox status, was decreased in the hippocampus and cerebellum. The results are in accordance with the observation that this nanoscale material remains in this mammal model up to 30 days after its administration and the hypothesis that it exerts pro-oxidant effects on the brain without crossing the BBB. These results have important implications on the potential use of ceria ENM as therapeutic agents

    Integrated genomic characterization of endometrial carcinoma

    Get PDF
    SummaryWe performed an integrated genomic, transcriptomic, and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumors and ~25% of high-grade endometrioid tumors have extensive copy number alterations, few DNA methylation changes, low ER/PR levels, and frequent TP53 mutations. Most endometrioid tumors have few copy number alterations or TP53 mutations but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A, KRAS and novel mutations in the SWI/SNF gene ARID5B. A subset of endometrioid tumors we identified had a dramatically increased transversion mutation frequency, and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy number low, and copy number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may impact post-surgical adjuvant treatment for women with aggressive tumors

    Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

    Get PDF
    SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers

    Comprehensive molecular portraits of human breast tumours

    Get PDF
    This Article from the Cancer Genome Atlas consortium describes a multifaceted analysis of primary breast cancers in 825 people. Exome sequencing, copy number variation, DNA methylation, messenger RNA arrays, microRNA sequencing and proteomic analyses were performed and integrated to shed light on breast-cancer heterogeneity. Just three genes — TP53, PIK3CA and GATA3 — are mutated at greater than 10% frequency across all breast cancers. Many subtype-associated and novel mutations were identified, as well as two breast-cancer subgroups with specific signalling-pathway signatures. The analyses also suggest that much of the clinically observable plasticity and heterogeneity occurs within, and not across, the major subtypes of breast cancer

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Commercial spruce plantations support a limited. canopy fauna: Evidence from a multi taxa comparison of native and plantation forests

    Get PDF
    Globally, the total area of plantation forest is increasing as deforestation and fragmentation of native forest continues. In some countries commercial plantations make up more than half of the total forested land. Internationally, there is growing emphasis on forestry policy for plantations to deliver biodiversity and ecosystem services. In Ireland, native forest now comprises just 1% of total land cover while non-native spruce forest makes up 60% of the plantation estate and approximately 6% of the total land cover. The majority of plantation invertebrate biodiversity assessments focus on ground-dwelling species and consequently a good understanding exists for these guilds, especially ground-active spiders and beetles. Using a technique of insecticide fogging, we examine the less well understood component of forest systems, the canopy fauna (Coleoptera, Araneae, Diptera and Hemiptera), in Irish spruce plantations (Sitka and Norway) and compare the assemblage composition, richness and abundance to that of remnant native forest (ash and oak). In addition, we examine the potential for accumulation of forest species in second rotation spruce plantations and identify indicator species for each forest type. From 30 sampled canopies, we recorded 1155 beetles and 1340 spiders from 144 species and over 142 000 Diptera and Hemiptera from 71 families. For all taxa, canopy assemblages of native forests were significantly different from closed-canopy plantation forests. No indicators for plantation forest were identified; those identified for native forest included species from multiple feeding guilds. Plantations supported approximately half the number of beetle species and half the number of Diptera and Hemiptera families recorded in native forests. Although assemblages in Norway spruce plantations were very different to those of native forest, they had consistently higher richness than Sitka spruce plantations. No differences in richness or abundance were found between first rotation and second rotation Sitka spruce plantations. Compared to other forest types, Sitka spruce plantations contained far greater total abundance of invertebrates, due to vast numbers of aphids and midges. Under current management, Sitka spruce plantations provide limited benefit to the canopy fauna typical of native forests in either first or second rotations. The large aphid populations may provide abundant food for insectivores but may also lead to reduced crop production through defoliation. Progressive forestry management should attempt to diversify the plantation canopy fauna, which may also increase productivity and resilience to pest species
    • 

    corecore